Energetic Efficiency (EE) over Wired Networks

Alberto E. García

Telematic Engineering Group, University of Cantabria, Spain agarcia@tlmat.unican.es

Disclaimer

- The contents of this presentation include figures and results from several Internet sources.
- Author has tried to include all the corresponding references, included at the end of this presentation
- With all, the major part of the presented technologies and solutions are actually over researching and the lecturer recommends to complete the information for each option directly over the source to obtain concrete details.
- If you are not referenced yet, I'm sorry and I'll include your name in next versions of this document.

Agenda

- 1. Power consumption over the access
- 2. Power consumption over the backbone
- 3. Why Energy Efficiency over networks
- 4. EE over the practice: some proposals
- 5. Main keywords:
 - 1. EE techniques
 - 2. Circuit switching
 - 3. Slow down
 - 4. Turn off hardware
 - 5. EE applications/protocols

Internet: the origin

Traditional hierarchical Internet topology

• Most traffic flowing between the core tier-1 provider

Internet: actually

Emerging flat Internet topology

- Most traffic flowing directly between content providers
 and customer IP networks
- Part flows to the global Internet through Internet Exchange Points (IXP)

Internet: the practical view

And ... cloud computing???

EE: What is the objective?

Communication from the Commission - Energy efficiency: delivering the 20% target /* COM/2008/0772 final */

- The optimization of energy consumption is a crucial topic
- European Commission promoted the ambitious

"20-20-20"

- 20% cut in emissions of greenhouse gases by 2020 (compared with 1990 levels); a
- 20% increase in the share of renewable sources in the energy mix
- 20% cut in energy consumption.
- Transport networks are into the hurricane eye

Which transport networks?

Is it possible???

NGN is an explanation too

Source STRONGEST Project

It's the time of the (ICT) networks

EUROPEAN COMMISSION DIRECTORATE -GENERAL JRC JOINT RESEARCH CENTRE Initidus for the Environment and Sustainability Renewable Energies Unit

Code of Conduct on Energy Consumption of Broadband Equipment

> Draft Version 3 Issue 15 - 17 July 2008

"With implementation of this Code of Conduct,... 5.5 Millions tons of oil equivalent (TOE) will be saved per year."

Extract:		Off-State (W)	ff-State Low-Power (W) State (W)	
	ADSL-CPE	0.3	3.5	4.0
	VDSL2-CPE	0.3	4.5	6.0
	GPON ONU	0.3	5.0	9.0
	PtP ONU	0.3	3.0	5.0

The reality of the access

- Coexistence of several access worlds
- Limits depending of technology

	P _{TU} (kW)	N _{TU}	P _{RN} (W)	N _{RN}	P _{CPE} (W)	Technology limit	Per-user capacity
ADSL	1.7	1008	N/A	N/A	5	15 Mb/s	2 Mb/s
HFC	0.62	480	571	120	6.5	100 Mb/s	0.3 Mb/s
PON	1.34	1024	0	32	5	2.4 Gb/s	16 Mb/s
FTTN	0.47	1792	47	16	10	50 Mb/s	2 Mb/s
PtP	0.47	110	N/A	N/A	4	1 Gb/s	55 Mb/s
WiMAX	0.47	24400	1330	420	5	22 Mb/s	0.25 Mb/s
UMTS	0.47	15300	1500	264	2	20 Mb/s	0.25 Mb/s

Access: What are the limits?

Technology	Range (km)	Bit rate (Mb/s)	Users/node	Minimal user density (subs/km ²)	Power/sub (with PUE) (W/subs)
ADSL ADSL2+	5.5 1.5	8 ¹ 24 ¹	384-768	4-8 50-100	2-4
VDSL VDSL2+	1.0 0.3 0.3	26 ¹ 55 ¹ 100	16–192	5–60 50–700 50–700	6–10
GPON (32) GPON (64)	20 10	2488/32 2488/64	(4–72) * 32 (4–72) * 64	0.1-2 0.8-14	0.4–1.6
Mobile WiMAX HSPA LTE	0.340 (3 Mb/s) 0.240 (3 Mb/s) 0.470 (3 Mb/s)	1–70 1–14 1–300	272 ² 225 ² 180 ²	N/A N/A N/A	27 ³ 68 ³ 18 ³

Source ECOnet Project (low Energy COnsumption NETworks) https://www.econet-project.eu/ Source: "Power consumption in telecommunication networks: overview and reduction strategies", IEEE Communications Magazine, June 2011

Access: How many and When?

 Power as a function of access rate with an oversubscription rate of 20.

- Expected power consumption of latest
- Base access rate in 2010 = 5 Mb/s.

Access: and the winner is...

Comparing with the rest

- Optical technologies are most eficient
- Backbone equipment more efficient than access
 equipment

And the backbone?

 Backbone equipments evolved too

- But, what is the problem?
 - comsumption proportional to the bandwidth

Inside a router

EE in routers: who is who?

Why does the network need EE ?

- Currently:
 - Access is dominating overall energy consumption
- In future...near future!!!
 - Core will become increasingly important
 - Feasibility limits may be reached (growing traffic volumes & more node consolidation)
- Innovation needed:
 - To keep this under control
 - To stay well below these limits
 - Even avoid further growth of energy

EE: some suggestions

Practical EE: a formal approach

Scalable, Tunable and Resilient Optical Networks Guaranteeing Extremely-high Speed Transport

Source: STRONGEST project http://www.ict-strongest.eu/

The "Strongest" Keywords

- A. Improved inherent energyefficiencies as offered by electronics technologies
 - (1) More efficient CMOS technologies
 - (2) High temperature operation of ICs
- B. More sophisticated management and exploitation of network resources
 - (3) Source coding & caching
 - (4) Multi-layer traffic engineering (MLTE),

operation.

www.cost804.ord

Action IC0804

(5) Powering down, sleep/idle modes and burst-mode

GRI IPO DE

- C. The inherent energy efficiencies as offered by optics technology solutions
 - (6) Optical bypass
 - (7) Coherent detection
 - (8) Polarisation multiplexing.
- D. More environmentally sustainable approaches to network design such as
 - (9) Micro-power generation
 - (10) Increased reliability and robustness of network equipment.

EE: some solutions

- Techniques for improving energy efficiency in communication networks:
- 1. EE technics
- 2. Circuit switching less work/buffering
- 3. Slow down
- 4. Turn off hardware

EE Technics

Routing vs. switching

Source: ECOnet

Circuit Switching

- Internet traffic: large share of predictable services (e.g. video)
 - Circuit switching = EE
- Pipeline forwarding
 - No buffers & no header processing
 - ++ faster
- Application: video file/stream per optical circuit

Source: Mario Baldi , Yoram Ofek: Time for a "Greener" Internet

Switching: the evolution

Source: Tucker et al

SDH/SONET + WDM

- a) All traffic is passed up through the lower layers and processed by the IP router
- b) Traffic is processed by the SDH/SONET switch, bypassing the IP router
- c) Traffic is switched by the optical cross-connect, bypassing both the SDH/SONET and IP layers. Lower layers are progressively more energy efficient.

Point to point WDM netowork

Optical IP network

Wabeband IP network

Optical Burst switching

- Requires increased number of lightpaths for a given blocking probability
- Switch technology requires fast reconfiguration time:
 - More costly per port than "slow"OXC's(MEMS etc.)

OBS: application

- Pro's
 - Requires fewer OXC ports
- Con's
 - OXC ports must be wideband
 - Requires waveband (i.e. multi-channel) wavelength conversion
 - Dispersion issues

Optical packet switching

- No viable optical buffering technology in sight
 - Optical switch fabrics may become competitive with CMOS
 - Not clear whether optical packet switching will solve the energy bottleneck problem

Slow down techniques

- Desktop links have low utilization
 - Snapshot of a typical 100
 Mb Ethernet link
 - Shows time versus utilization (trace from Portland State Univ.)

- Some Server links have low utilization
 - Snapshot of a File Server with 1 Gb Ethernet link
 - Shows time versus utilization (trace from LBNL)

Slow down & buffering

- Buffering a Selective sleep:
 - Buffering the packets to larger bursts

Two variations

- Managed: monitors schedules links being up
- Autonomous: waits depending on buffer size
- Disadvantage:
 - More bursty traffic
 - Lower QoS

Adaptive link rate

Source Bianzino et al

Based on works of Dr. Ken Christensen from University of South Florida and Bruce Nordman from LBNL

 "Ethernet Adaptive Link Rate: System Design and Performance Evaluation", Gunaratne, C., Christensen, K.; Proceedings 2006 31st IEEE Conference on Local Computer Networks, Nov. 2006 Page(s):28 - 35

Adaptive Link Rate

- a. No power-aware optimizations
- b. Only idle logic
- c. Only performance scaling
- d. Performance scaling and idle logic

Adaptive Link Rate: expected results

Low power idle

- Smart switching of interface to low power mode
 - LPI replaces the continuous IDLE signal
 - Energy consumption around 10% of active mode
- Synchronisation is kept with signalling during short periodic refresh intervals (Tr)
 - Trade-off energy for latency
- Transitions between active/sleep modes take time
 - Ts Time to go to low power (sleep) mode
 - Tw Time to wake up link

LPI

T_s: Time to low power idle (sleep) T_w: Time to go to active (wake) T_q: Interval without signalling T_r: Refresh signalling interval

- Combined with Adaptive Link Rate is the basis of 802.3az
 - September 2010 IEEE Std 802.3az approved

Turn off hardware

Source: "Power reduction Techniques in MLTE, Bart Puype et al, IBCN

Turn off based on traffic demand

Source: http://asert.arbornetworks.com/2009/08/what-europeans-do-at-night

EE Power over Ethernet

Technology	How much it could save	When will the saving kick-in	Number of Ethernet Links shipped per year
EEE over GbE	~1W per link	Power saving is instantaneously when link is idle	200M and growing
EEPoE with .3af	~0.6W per link	Power saving will occur as long as power is on	40M and growing
EEPoE with .3at	~2.1W per link	Power saving will occur as long as power is on	30M and growing
Total Savings for EEE + EEPoE	3.13W per link		

Source: "Power over Ethernet (PoE): An Energy-Efficient Alternative",

Roman Kleinerman, Marvell

and Daniel Feldman, Microsemi Corporation, in Marvell Whitepaper,

2011

Energy-aware routing

 Routers are put to sleep when the network load is low, while preserving connectivity. This technique may increase the load on some links

MLTE results

- Two optimization modes:
 - Slow: days/week
 - Fast: hours
- Power scales
 - Better with traffic volume as MLTE acts faster

Source: "Power reduction techniques in multilayer traffic engineering", Bart Puype et al, IBCN

current situation: IP over SDH /DWDM

- Completely inefficient architecture, due to massive IP switching
 - With increasing bit rates the power consumption for routers is becoming a bottleneck.
 - Routers have exponentially increasing power consumption as a function of the bit-rate

IP only at the edge

IP only at the edge

- Traffic is mainly switched at packet transport or optical level instead of IP
 - Lower power consumption per bit/s (-60% power consumption)
 - Carrier class devices avoiding dualling (-40% power consumption)
- Control plane enhancement enabling dynamic traffic engineering
 - Multi-layer traffic engineering (-30% power consumption)
 - Powering down, sleep/idle modes and burst-mode operation (-10% power consumption)
 - Dynamic (on-the-fly) restoration (-30% power consumption)

ultra high capacity and EE data plane

- Traffic is mainly switched at optical level, enriched by multi-granular / flexi-grid technologies and sub-lambda switching
 - Complete optical bypass (-90% power consumption)
 - Multi-granular flexigrid (-30% power consumption)

Other solutions: Grooming

- Link-by-link
 - OEO conversion in each node for all traffic
- End-to-end

www.cost804.ord

Action IC0804

 End to end optical path (wavelength)

SRI IPO DE

- Bypass traffic does not need OEO conversion (except long path > 3000Km)
- In each node:
 - Core router
 - regenerator

Energy-aware protocols

 In a modified version of TCP the receiver may notify its peer of its intention to sleep. During the sleep period, the source buffers the specified amount of data instead of directly transmitting it.

Proxying

- Variation of turn off interfaces
- NIC proxying:
 - only affect to end elements
- External proxying:
 - translates the activity to the top until required reconnection
- Vitualization and cloud computing are advanced variations of proxying

Content Centric Networks

 Content Centric network (CDN – content delivery network)

• Autonomic networking and Cloud computing

Cloud Computing

Cloud Computing

- Software as a Service
 - Stored on user's computer with updates downloaded regularly
- Service Bureau
 - Most tasks done on lower end user machine, outsource the "big" jobs
- Computing as a Service
 - Hosted and run on provider computer "farm" with data initially uploaded from user (Thin client model)

References

- Tucker, Baliga et all
 - "A green Internet," (Plenary Address), IEEE lasers and Electro-optics Society Annual Meeting (LEOS'08, Newport Beach, California, November 2008, pp. 4-5..
 - "Optical Packet-Switched WDM Networks: a Cost and Energy Perspective," (Invited Paper) Optical Fiber Communication Conference, 2008. Technical Digest. OFC/NFOEC, 24-28 Feb. 2008, San Diego California.
 - "Green Cloud Computing: Balancing Energy in Processing, Storage, and Transport", Baliga, J., Ayre, R. W., Hinton, K., & Tucker, R. S. (2011). Cloud Computing and Energy Transport, 1(1), 19.
 - "Power consumption and energy efficiency in the internet", K. Hinton, J. Baliga, M. Feng, R. Ayre, R.S. Tucker. IEEE Network Magazine, Special Issue on "Energy-Efficient Networks," vol. 25, no. 2, pp.6-12, March-April 2011.

References

- Bolla et al
 - Energy Efficiency in the Future Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infrastructures by: R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti. Communications Surveys & Tutorials, IEEE, Vol. 13, No. 2. (2011), pp. 223-244
- Bianchino et al
 - <u>"A Survey of Green Networking Research"</u>, Aruna Prem BIANZINO, Claude CHAUDET, Dario ROSSI, Jean-Louis ROUGIER, in IEEE Communications Surveys & Tutorials, vol. 14, no. 2, pp. 3-20, First Quarter 2012.
- Aleksic
 - "Analysis of Power Consumption in Future High-Capacity Network Nodes", Slaviša *Aleksić, in* IEEE/OSA Journal of Optical Communications and Networking, vol 1, nº3, pp 245-259, 2009

Branch	Reference	Time	scale	Network	Approach	Input	Comments
Dimiti		On-line	Off-line	Layer	Theff a Analogia	Process	Desition and mating
Adaptive Link Rate (ALR)	*[21] Gepta and Singh [22] Gepta et al. *[23] Genantue et al.	Giobal Local Local		Data Link Data Link Data Link	Trace Driven Sim. Trace Driven Sim.	Forecast Forecast Instant.	Position paper, motivates ALR, Coordinate Sleeping mode, based on Arrival Process (AP) Sleeping mode, AP ALR part of the paper; Rate Switching, based on
	[24] Gunaratue et al. [25] Cupta and Singh *[26] Nedevachi et al.	Local Local Local		Data Link Data Link Data Link	Trace Driven Sim. Traffic Trace Simulation	Instant. Forecast Forecast	the Queue occupancy (Q) Rate switching, Q Sleeping mode, Q and AP Sleeping mode vs Rate switching, Q and AP; Abi- lene topoloev
	[27] Ananthanarayanan and Katz	Local		Data Link	Trace Driven Sim.	History	Switching architecture; Sleeping mode AP
	[28] Gunaratne et al.	Local		Data Link	Math Model & Sim.	History	Trace and synthetic traffic; Rate switching, Q
Interface Proxying	*[23] Gunaratne et al.	Local		Cross	Traffic Analysis	Instant.	Proxying part of the pa- per; motivates NIC and External
	[29] Purushothaman et al.	Local		Application	Trace Driven Sim.	Instant.	NIC Proxying for Gnutella protocol
	[30] Jimeno and Christensen	Local		Application	Hw prototype	Instant.	External Proxying for Gnutella protocol
	[31] Sabhanatarajan and Gordon-Ross	Local		Network	Trace Driven Sim.	Instant.	NIC Proxying; packet in-
	[32] Agarwal et al.	Local		Cross	Hw prototype	Instant.	NIC Proxying; Somnilo-
	[33] Nedevschi et al.	Local		Cross	Sw prototype	Instant.	Trace Driven evaluation; External Proxying
	*[21] Gupta and Singh		Dim.	Network	Traffic Analysis	History	Position paper, motivates
Energy aware infrastructures	*[26] Nedevschi et al.	Global		Data Link	Simulation	Instant.	Coordinate sleeping; Abi-
	[34] Baldi and Ofek [35] Chiaraviglio et al.		Design Dim.	Cross Network	Architectural Numerical solution	History	Clean slate design Energy-aware routing; Heuristic solution of ILP
	[36] Chabarek et al.		Design	Network	Operational Research	History	Energy-aware infrastructure, Router
	[37] Sansö and Mellah [38] Da Costa et al.	Global	Design	Network Application	Operational Research Trace Driven Sim.	History Instant.	QoS/Energy tradeoff Grid5000 management
	[39] Irish and Christensen	Local		Transport	Sw Prototype	Instant.	TCP split connection; pro-
Energy aware applications	[40] Wang and Singh		Design	Transport	Sw Prototype	-	tocol modification TCP optimization of FreeBSDv5
	[41] Blackburn and Christensen	Local		Application	Sw Prototype	Instant.	Telnet protocol modifica- tion
	[42] Blackburn and Christensen	Local		Application	Simulation (ns2)	Instant.	BitTorrent protocol modi- fication

